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Abstract.  An approximate solution to the 2-D Navier-Stokes equations for steady, isothermal, incompressible, 
laminar flow in a channel bounded by one porous wall subject to uniform suction is derived. The solution is valid for 
small values of the Reynolds number based on the suction velocity and channel height. Solute transport is 
considered numerically by decoupling the equations representing momentum and mass transfer. The effect of fluid 
slip at the porous boundary on the axial and transverse components  of fluid velocity, axial pressure drop and mass 
transfer is investigated. 

1. Introduction 

Crossflow (or tangential flow) membrane filtration has become an important solid-liquid 
separation process in water treatment in the last two decades. This technique involves the 
application of a pressure differential to a feed stream flowing tangentially over a porous 
membrane.  While clean solvent (with components smaller than the pores) flows through the 
membrane,  the larger components are removed at the membrane surface and form a layer 
which in time presents additional resistance to the flow of solvent across the membrane. This 
phenomenon is termed concentration polarization. Parallel plate membrane modules consist- 
ing of a channel bounded by two porous walls are widely used for filtration. Berman [1] first 
derived approximate expressions for the fluid velocity components for flow in such a module 
assuming a sufficiently small Reynolds number, Re w (based on the wall permeation velocity 
and channel height) and no-slip at both walls. Robinson [2] proved the existence of multiple 
solutions to the Navier-Stokes equations for Re w > 12.165. Beavers and Joseph [3] reported 
mass efflux experiments and proved the existence of a non-zero tangential (slip) velocity on 
the surface of a permeable boundary. Saffman [4] using a statistical approach, derived a form 
for the slip velocity us, p , as being proportional to the shear rate: 

au 
+ o (k ) ,  (1.1) Uslip --  19l 8y 

where a is a dimensionless constant which depends on the pore size of the permeable 
material (Beavers and Joseph correlated their experimental data with a = 0.1), k is the 
permeability and y is the inward normal to the porous surface. Singh and Laurence 
investigated the fluid mechanics and mass transfer in parallel plate and tubular membrane 
filtration systems assuming equally porous boundaries [5, 6]. In their mass transfer studies, 
they used extremely high values for the slip coefficient (0.1 and 0.5), which cannot be 
realized with available membranes. Frequently, laboratory scale parallel plate filters are 
asymmetric, having only one porous wall, the other wall being solid. Such a geometry is 
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convenient for conducting experiments; for permeate collection, membrane replacement and 
concentration measurement. Membrane filtration to separate plasma and cellular compo- 
nents from whole blood (plasmapheresis), is often carried out in a filtration cell with one 
porous wall, both in laboratory and commercial scale [7]. Experimental mass transfer results 
obtained from such a filter geometry can be used to gain understanding of flux reduction and 
polarization phenomena in other membrane filtration geometries. For the mathematical 
modeling of such experimental data, expressions for the velocity and pressure fields are 
necessary. 

This paper presents a regular perturbation solution describing the flow characteristics in an 
asymmetric channel with a finite fluid slip velocity at the porous boundary. The steady-state 
convection-diffusion equation is solved numerically by decoupling the velocity and concen- 
tration fields. The effect of fluid slip on the velocity profiles, on the pressure drop and on the 
mass transfer of Brownian components is also reported. While fluid slip is negligible at a free 
membrane surface it is proposed to be a useful concept in describing deposition onto a 
concentration polarization layer and in modeling transport phenomena in dynamic mem- 
branes. 

2. Formulation of the fluid flow problem 

Consider the flow of an incompressible fluid in a channel with one porous wall without the 
action of external forces. The coordinate system used is given in Fig. 1. L and h denote the 
length and height of the channel respectively, x is the axial distance coordinate measured 
from the channel entrance and A is the dimensionless coordinate in the normal direction 
(=- y /h ) .  If the width of the channel is very large compared to the height, the flow can be 
modeled as being two dimensional. The Navier-Stokes equations of motion describing the 
transfer of momentum in this case assuming steady, isothermal, laminar flow are 

Ou v O u _  1 0 P  {02u 1 02u'~ (2.1) 
u ~x + h OA p Ox +v~,~x2 + h ~ OA2/' 

Ov v O v _  1 0 P  (02v 1 O2v) 
U ~x + h OA ph OA + v --Ox 2 + h~--OA 2 , (2.2) 

T 
h 

solid wall 
//////////////////,4 

y,~ ,V 

I_. L . . I  

Fig. 1. Coordinate system used in the solution of the 2-D Navier-Stokes equations. 
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where P and u denote  the fluid pressure and kinematic viscosity respectively and u and v are 
the velocity components  in the axial and transverse directions. The continuity equation 
representing a conservation of mass for this fluid is written as 

Ou 1 0 v  
- -  + - 0 .  (2 .3)  
Ox h Oh 

The  boundary conditions are 

u = 0 at h = 0 ,  (2.4) 

v = 0 at h = O, (2.5) 

v = v  w a t h = l ,  (2.6) 

at h = 1. (2.7) 
U = U s l i p  - -  a h  Oh 

Equations (2.4) and (2.5) are the no-slip boundary conditions for a viscous fluid at the 
surface of the solid wall. Equation (2.6) denotes that the suction rate at the permeable wall, 
v w is constant along the length of the channel. Equation (2.7) is derived from Eq. (1.1) 
assuming that the term O ( k )  can be neglected compared to the term O(X/-k) (valid for 
k ~ 1). This boundary condition allows for a tangential component  of fluid velocity along the 
porous boundary.  

3. Perturbat ion solut ion of  the equat ions  of  mot ion 

The solution technique followed here was first formulated by Berman [1]. For  incompressible 
flows, the velocity vector v can be expressed in terms of a vector potential qp as 

v =V x qj .  (3.1) 

In two dimensions, in terms of the scalar stream function 0, we write 

o~p 1 o~p 
u -  Oy h OA ' (3.2) 

04, 
v - O x  (3.3) 

Let  u 0 represent  the uniform inlet velocity. We introduce a stream function from a mass 
balance on the fluid in the channel as 

~b = [hu o - VwX]f (  A) , (3.4) 

where f ( h ) i s  an unknown function of the distance coordinate A. Substituting Eq. (3.4) into 
Eqs (3.2) and (3.3) expressions are obtained for the velocity components  as 

u = (u  o - V w X / h ) f ' ( A ) ,  (3.5) 
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v = vwf(A ) . (3.6) 

When Eqs (3.5) and (3.6) are substituted into Eqs (2.1) and (2.2) we obtain 

( u° h / (  h-- [ ( f , ) 2 _ f f , , ] _  h-~ f . . . .  1 0 P  
p O x '  

2 
vw VVw f , , _  1 OP (3.8) 

i f '  h 2 ph  OA " 

We note that the left hand side of Eq. (3.8) is a function of A only (i.e. independent of x). 
Assuming the pressure is twice differentiable we can differentiate Eq. (3.8) w.r.t, x to get 

02p 02p 
OxOA = 0 '  or OhSx = 0 "  (3.9) 

Differentiating Eq. (3.7) with respect to h and simplifying we obtain 

0{o. 
0---£ --h [ ( f , )2  _ ff,,] + ~ f,,, = 0 .  (3.10) 

Integrate Eq. (3.10) and simplify to get the ordinary differential equation 

Rew[ ( f ' )  2 - i f " ]  + f "  = C ,  (3.11) 

where Re w is a wall Reynolds number (=-v,,h/v) and C is the constant of integration. An 
approximate perturbation solution to Eq. (3.11) is possible if we treat Re w as the perturba- 

tion parameter ,  i.e. Re w must be sufficiently small. We look for a solution of the form 

f(A) = fo(A) + Re w fl (A) + Re2w f2(A) + . . .  + Re,~ f~ (h) + . . . ,  (3.12) 

2 n 
C = C O + RewC 1 + RewC 2 + . . .RewC n + . . . ,  (3.13) 

where f / a n d  C i are independent  of Re w. Collecting powers of Re w we get 

0th order: fo' = Co, (3.14) 

1st order:  f'~'= CI + f o f ~  - ( f0)  2 , (3.15) 

2nd order: f'~' = C2 - 2 f J ~  + f o f ;  + f '~fl .  (3.16) 

The boundary conditions (Eqs 2.4-2.7)  transform into 

f'i = 0  at A = 0  for i~>0,  (3.17) 

f~ = 0  at h = 0  for i~>0,  (3.18) 

f 0 = l  and f / = 0  at A = I  f o r i 1 > l ,  (3.19) 

t t! f i  = - c f i  at h = 1 for i 1> 0 ,  (3.20) 
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where 0 is the slip coefficient (=- X/ -k /ah) .  The zeroth order solution obtained by solving Eq. 
(3.14) along with the boundary conditions given by Eqs (3.17)-(3.20) is 

2(1 + O) ~3 3(1 + 20) A2 (3.21) 
f o -  ( 1 + 4 0 )  + ( 1 + 4 0 )  " 

The first order solution is 

a 3 h 2 12(1+ 0) 2 x7 (1 + ¢)(1 + 20) A6 3(1 + 2 0 )  2 As (3.22) 
f~ = K1 -6- + K2 2 210(1 + 40) 2 + 5(1 + 40) 2 10(1 + 4 0 )  2 ' 

where K 1 and K 2 a r e  constants that depend only on the slip coefficient. 

_ - 1  ~24(1 + ¢) 3 12(1+0)2(1+20)  + 3 6 ( 1 + 0 ) ( 1 + 2 0 )  2 
K~ (1 ~ - 0 )  3 t 35 5 10 

K 2 - 

12(1 + 0)2(1 + 60) 5 + 36(1 + 0)(1 +5 20)(1 + 50) _ 9(1 + 40)(1 + 20) 2} , (3.23) 

1 J" 12(1 + 2 0 ) ( 1  + 0 )  z 
(1 + 4 0 )  3 [ 35 

4(1 + 0)2(1 +60)  
5 5 

6(1 + 0)(1 + 20) 2 

9(1+520)3 + 12(1 + 0)(1 +5 20)(1+ 50) _ 3(1+ 40)(1+ 20) 2]j + (3.24) 

The velocity profiles can now be written as 

u(x ,  A) = (u 0 - V w X / h ) ( f 6  + Rewf~) (3.25) 

and 

v(A) = vw( fo  + Rewfl) .  (3.26) 

Mid-channel axial and transverse velocities normalized by the local maximum values are 
shown in Figs 2 and 3 for various values of the slip coefficient. Increasing slip is observed to 
decrease the shear rate at the porous wall and results in flatter axial velocity profiles. When 
0 = 0 (no-slip), the expressions described here reduce to the one given by Green [8]. An 
entrance Reynolds number Reen t (--- uoh /u  ) is introduced and hence, dimensionless stream- 
lines ~*,  are given by 

• *(x, A) - 0(x' A) - ( l ~ u  o- R-~c.tRew ~x)(fo(h)+Rewfl(h))  , (3.27) 

To visualize the flow, non-dimensional streamlines are plotted in Fig. 4. It is observed that 
the streamlines are not orthogonal to the porous wall resulting in a non-zero normal 
derivative and therefore a finite value for the slip velocity. The expression for the 
dimensionless pressure drop Ap, along the channel length can be derived from Eqs (3.7) and 
(3.8)  as 

p(0, A ) -  p ( x ,  A) 2 C v  { v , ,x2~ 
A p =  1 2 - 2 2 ~UoX "" J (3.28) 

p u  o h u o 2h  / " 
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Fig. 2. Effect of the slip coefficient on the mid-channel axial velocity. 
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Fig. 3. Effect of the slip coefficient on the mid-channel transverse velocity. 

Figure 5 depicts the effect of the slip coefficient on the axial pressure drop; increasing slip is 
observed to decrease the axial pressure drop. 

4. Formulation of the mass transfer problem 

In all tangential flow membrane  systems, v w ~ u o. Therefore  diffusion in the axial direction 
can be neglected in comparison to diffusion in the transverse direction. Consider a feed 
s t ream having a uniform concentrat ion c 0, across the inlet cross section (Eq. 4.4). The two 
dimensional  convection-diffusion equation describing the transfer of mass at steady state in 
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Fig. 5. Variation in the pressure drop in the channel as a function of the slip coefficient. 

such a system is 

Oc Oc 02c 
U ~x  + V ~-fy = D --oy 2 ,  (4.1) 

where  D is the diffusion coefficient of  the solute and c denotes  the concen t ra t ion  of  the 
solute.  E q u a t i o n  4.1 a long with the bounda ry  condit ions given below const i tute  a comple te  

descr ipt ion of  mass t ransfer  in a m e m b r a n e  system. 

0 c  
- -  = 0 a t  y = O ,  ( 4 . 2 )  
Oy 
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Oc 
D ~.. = v w c  w a t y = h ,  

o)i 
(4.3) 

c = c o at x = 0 .  (4.4) 

We impose the no-flux boundary condition at the solid wall (Eq. 4.2). Equation (4.3) is the 
boundary condition for a perfectly rejecting membrane,  i.e., no solute passes through the 
porous interface. Hence,  at steady state the convective transport of solute towards the 
porous wall is balanced by diffusive back transport of material in the side of the fluid 
continuum. This dynamic exchange of material results in a steady concentration boundary 
layer thickness, c w represents the unknown solute concentration at the porous wall. 

5. Numerical solution of the mass transfer problem 

Introduce the following non-dimensional variables in Eq. 4.1 

u* u v* v c* c x* x y ( ) . . . . . . . .  h = -  5.1 
u o v w c o L ' h ' 

and rearrange to get in dimensionless form 

( VwL ] Oc* D L  O2C * 
u* Oc* + \ ~ ° h / V  , _ _  _ . (5.2) 

OX* c3A Uo h2 c3A 2 

The boundary conditions are also expressed in dimensionless form as 

c* = 1 at x* = 0 for all A, (5.3) 

OC* 
- 0 at A = 0 for all x * ,  (5.4) 

0A 

Oc* cw vwh 
- v * - - - -  at A = l f o r  a l l x * .  (5.5) 

0A c o D 

Let  the channel inlet and exit be denoted by m = 1 and m = mma x respectively; the solid and 
porous walls are represented by j =  1 and j =  J,,ax" Introduce the backward difference 
approximations for the derivatives in Eq. 4.6 and rearrange to get the finite difference 

equation 

my_lC;_lm+Bjcpn+EyCj+lm=5 f o r  2~<j<~Jmax--1, (5.6) 

where 

_ v , (  VwL ] 1 
Zj_a= j\-~o-o~oh/~-~-(~o~2) (A,~)2 , (5.7) 

• lvwL, 1 (o )1 
Bj u] + ° J ~ u o h ) - ~ + 2  (5.8) 

a x *  ( a ~ )  2 ' 
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(5.9) 

(5.10) 

These coefficients are valid for all the interior points. At the porous and solid boundaries we 
use the boundary conditions (4.2) and (4.3) and simplify to get the finite difference equation 
valid at the solid wall 

B1C1L "11- E1C2L = 0 for j = 1. (5.11) 

The coefficients B~ and Ex are 

B1 = vT u--~-] ~ + 2 (A/~)2 , 

,[vwL~ ~_.~__~ ( DL ) 1 
g l = - U l ~ - ~ o h )  - 2  u ~  (AA) 2 '  

(5.12) 

(5.13) 

The finite difference equation at the porous wall can be obtained similarly as 

Ajma ×-'cj2ax- lm + BjmaxCj2axm = Fjmax for j = Jmax" (5.14) 

The coefficients are as given below 

, {vwL  
mjmax_1 =__Ujmax~_~oh] ~____~ _ _ 2 ( ~ )  1 (Aa)2, (5.15) 

Ujmax -~- ~ 2 - -  - 2 - -  (5.16) njmax- AX* [3Jmax~U'~] (A/~) 2 hu0AA ' 
U x * 

Fire.x= Ax* Cjm"xm--I " (5.17) 

These coefficients constitute a tridiagonal system of the form 

B 1 El 
A 1 B2 E2 

A2 B3 E3 
Ai-i B i Ei 

Ajmax-2 Bjmax - 1 gjmax- 1 
Ajmax- 1 Bjmox 

-Clc* c2 1 -- -FI F2 F3 ] 

Jmax-- 1[  gjmax_ 1 

-- cj2ax J __fJma x J 

(5.18) 

Full details of the solution and the computer code for solving the system of linear equations 
(5.18) are given elsewhere [9]. The effect of slip on solute accumulation near the porous wall 
is illustrated in Fig. 6. The wall concentration and solute accumulation near the porous 
boundary is seen to decrease when the slip coefficient is increased. Singh and Laurence [5] in 
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Fig. 6. Effect of fluid slip on concentration profiles near the porous wall at mid-channel. 

their investigation on concentration polarization in a parallel plate membrane system with 
two porous walls had obtained a similar result. 

6. D i scuss ion  

Most commercial membranes are cast with a constant permeability. The pressure drop along 
the length of the channel would therefore ensure that the wall permeation rate decreases 
along the length of the duct. Thus, the assumption of constant wall suction rate is only an 
approximation even in the initial stages of filtration. Also, in solving the convection-diffusion 
equation, the field equations representing momentum and mass transfer have been de- 
coupled. Fluid and solute properties such as viscosity, density and diffusivity may change as 
polarization occurs. The relative importance of viscous and diffusive effects on solute 
transport is given by the magnitude of the Schmidt number, Sc (~  u/D). In most membrane 
filtration applications S c ~  O(103). This indicates that the concentration boundary layer 
occupies only a small fraction of the channel and that the momentum boundary layer fills the 
entire channel after a very short entrance region [9]. For example in Fig. 7, Sc = 5 x 103 and 
the maximum thickness of the polarized layer is only 3.5% of the channel height. Only in 
such instances is a separate treatment of momentum and mass transfer justified. In this case, 
Eq. 4.1 can be solved using the velocity components given in Eqs 3.25 and 3.26 to generate 
concentration profiles. Figure 7 shows the concentration boundary layer thickness in a 
membrane filter as a function of axial distance at various values of the slip coefficient using 
the same parameters used in generating Fig. 6. The concentration boundary layer is defined 
here as the region where the solute concentration is at least 1% higher than in the bulk fluid. 
It is observed that at any particular value of ¢, the boundary layer thickness increases with 
increasing axial distance from the channel entrance. Therefore, even if the permeability of a 
clean membrane were adjusted to give a constant suction velocity, non-uniform polarization 
of material on the membrane surface at steady state would present non-uniform hydraulic 
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Fig. 7. Growth of concentration boundary layers in the membrane filter at different slip coefficients. 

resistance for solvent flow across the permeable boundary. Thus, the suction rate can be 
expected to decrease along the channel length once a filter is put into operation. Even with 
these approximations, the model developed for the fluid mechanics has been found to 
accurately predict convective transport in mass transport experiments conducted in our 
laboratory [10]. 

7.  S u m m a r y  a n d  c o n c l u s i o n s  

The fluid mechanics of a membrane filtration module having one porous wall has been 
investigated using a regular perturbation technique initially proposed by Berman [1]. 
Approximate  expressions, correct up to O(Rew) for the axial and transverse velocities and 
axial pressure drop incorporating fluid slip at the porous boundary were derived. At steady 
state, solute accumulation near the porous boundary is determined by a balance between 
convective and diffusive transport.  The analysis presented for mass transfer is valid only for 
perfectly rejecting membranes and for large values of the Schmidt number. Increasing the 
magnitude of the slip coefficient was found to decrease the shear rate at the porous wall and 
also to alleviate concentration polarization. 

It is important  to note that the slip velocity plays a negligible role at the free membrane 
surface. 0 ~ O(10 -5) for membrane permeabilities of k ~ O ( 1 0  -17) m 2. However ,  slip may 
be used to model fluid mechanics and mass transfer when membranes are coated with a 
porous deposit. For  example, very open structures formed by aggregated colloidal materials 
deposited on the membrane  surface may result in high permeabilities at the surface of the 
polarized layer. Assuming an aggregate porosity of 95% for a deposit containing 1 /xm 
particles, the permeability is ~ O ( 1 0  -~2) m 2 corresponding to a slip coefficient of O ~  
O(10-2) .  Thus, previously deposited material may play an important  role in determining 
subsequent deposition on the concentration-polarization layer. In some filtration applica- 
tions, materials expected to exhibit filtration properties themselves are intentionally depo- 
sited onto porous supports. These secondary layers, termed dynamic membranes are used in 
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s o m e  c o m m e r c i a l  r e v e r s e  o s m o s i s  uni ts .  T h e  c o n c e p t  o f  f luid sl ip m i g h t  t h e r e f o r e  be  a u se fu l  

t o o l  f o r  m o d e l i n g  t h e  f luid m e c h a n i c s  a n d  m a s s  t r a n s f e r  in such  d y n a m i c  m e m b r a n e  sys t ems .  
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